lunes, 26 de agosto de 2013




CULUMPIOS MECANICOS 






La conveniencia mecánica de esta maniobra deriva del hecho de que el columpio es un péndulo físico cuya longitud vale la distancia del punto de suspensión al centro en masas de la carga que se mece. Cuando nos ponemos de cuclillas, baja el centro de masas de la carga en movimiento; cuando nos enderezamos, su posición se eleva. Por ello la longitud del péndulo aumenta y disminuye alternativamente variando dos veces en una oscilación.
Veamos, cómo debería moverse semejante péndulo de longitud variable.


 Movimiento directo del columpio

Supongamos que el péndulo AB se acorta hasta AC' al ocupar la posición vertical AB' (arriba). Como su peso baja en una magnitud DB', el mismo acumula cierta reserva de energía cinética que debe, en el tramo siguiente de la trayectoria, elevarlo a una altura igual. Mientras el peso sube del punto B' a C', esta reserva no disminuye, pues el trabajo invertido en la elevación no fue realizado a expensas de la energía acumulada. Por esta razón, el peso debe elevarse del punto C' en una magnitud C'H, iguala B'D, cuando el hilo se desvía a la posición A C. Es notorio que el nuevo ángulo b de desviación del hilo del péndulo debe superar el inicial a:

DB' = AB' - 4D = AB (1 - cos a),

HC' - AC' - AH = AC (1 - cos b)

Dado que DB' = HC',

AB (1- cos a) = AC (1- cos b)

y, por consiguiente,

AC / AB = (1- cos a) / (1- cos b)

Transformando las expresiones 1 - cos a y 1 - cos b obtenemos la expresión siguiente:



Pero en nuestro caso AC es menor que AB, por lo cual



Como ambos ángulos son agudos, entonces a < b. De modo que el hilo del péndulo (y la cuerda del columpio) debe desviarse de la posición vertical en una magnitud mayor que la vez anterior. Este efecto se observa cuando una persona, meciéndose en el columpio, se yergue mientras la tabla asciende.


Movimiento inverso del columpio

Ahora vamos a analizar el movimiento inverso del columpio, o sea, el trayecto del peso desde el punto extremo superior hasta su posición inferior, teniendo en cuenta que en este caso la longitud del péndulo aumenta: el peso desciende del punto C al G. Cuando el péndulo se desvía de la posición AG y pasa a ocupar la posición AG', el peso, que desciende en HG', acumula cierta reserva de energía potencial, la cual deberá elevarlo seguidamente a la misma altura en la parte restante de la trayectoria. Pero pasando a la posición AG' el peso se eleva de G' a K, por tanto, acto seguido, el hilo se desviará a un ángulo c, mayor que b, por la causa que hemos examinado anteriormente. Así pues,

c > b > a

Cuando se aplica el procedimiento descrito, el ángulo de desviación del hilo del péndulo y, por tanto, de las cuerdas del columpio, aumenta en cada oscilación y puede elevarse paulatinamente hasta la magnitud que se desee.
Realizando esta maniobra a la inversa, se puede frenar el movimiento del columpio y aun detenerlo.


 Modelo de columpio. Tomado del curso de Física Teórica de A. Einstein

En su obra Física teórica A. Eijenvald describe un experimento bastante sencillo que permite comprobar este hecho sin valerse del columpio. Para ello hay que «suspender una carga m de un hilo que pasa por un anillo fijo O. El extremo a puede desplazarse a ambos lados cambiando periódicamente la longitud del péndulo OM. Si el extremo a se mueve con una frecuencia dos veces mayor que la de oscilaciones del péndulo, eligiendo adecuadamente la fase de desplazamiento se puede lograr que el dispositivo se balancee con la amplitud requerida».
 La atracción entre los objetos terrestres y los cuerpos celestes.
La masa de los cuerpos celestes multiplica muchas veces la de los objetos terrestres. Además, las distancias entre ellos son un sinfín de veces mayores que las que separan los cuerpos terrestres. Como la fuerza de atracción es directamente proporcional al producto de sus masas, pero es inversamente proporcional al cuadrado de la distancia entre ellos



No hay comentarios:

Publicar un comentario